نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
5 نتائج ل "Chin, Chiun-Li"
صنف حسب:
Using Ballistocardiogram and Impedance Plethysmogram for Minimal Contact Measurement of Blood Pressure Based on a Body Weight-Fat Scale
Electronic health (eHealth) is a strategy to improve the physical and mental condition of a human, collecting daily physiological data and information from digital apparatuses. Body weight and blood pressure (BP) are the most popular and important physiological data. The goal of this study is to develop a minimal contact BP measurement method based on a commercial body weight-fat scale, capturing biometrics when users stand on it. The pulse transit time (PTT) is extracted from the ballistocardiogram (BCG) and impedance plethysmogram (IPG), measured by four strain gauges and four footpads of a commercial body weight-fat scale. Cuffless BP measurement using the electrocardiogram (ECG) and photoplethysmogram (PPG) serves as the reference method. The BP measured by a commercial BP monitor is considered the ground truth. Twenty subjects participated in this study. By the proposed model, the root-mean-square errors and correlation coefficients ( s) of estimated systolic blood pressure and diastolic blood pressure are 7.3 ± 2.1 mmHg and 4.5 ± 1.8 mmHg, and 0.570 ± 0.205 and 0.284 ± 0.166, respectively. This accuracy level achieves the C grade of the corresponding IEEE standard. Thus, the proposed method has the potential benefit for eHealth monitoring in daily application.
Cuffless and Touchless Measurement of Blood Pressure from Ballistocardiogram Based on a Body Weight Scale
Currently, in terms of reducing the infection risk of the COVID-19 virus spreading all over the world, the development of touchless blood pressure (BP) measurement has potential benefits. The pulse transit time (PTT) has a high relation with BP, which can be measured by electrocardiogram (ECG) and photoplethysmogram (PPG). The ballistocardiogram (BCG) reflects the mechanical vibration (or displacement) caused by the heart contraction/relaxation (or heart beating), which can be measured from multiple degrees of the body. The goal of this study is to develop a cuffless and touchless BP-measurement method based on a commercial weight scale combined with a PPG sensor when measuring body weight. The proposed method was that the PTTBCG-PPGT was extracted from the BCG signal measured by a weight scale, and the PPG signal was measured from the PPG probe placed at the toe. Four PTT models were used to estimate BP. The reference method was the PTTECG-PPGF extracted from the ECG signal and PPG signal measured from the PPG probe placed at the finger. The standard BP was measured by an electronic blood pressure monitor. Twenty subjects were recruited in this study. By the proposed method, the root-mean-square error (ERMS) of estimated systolic blood pressure (SBP) and diastolic blood pressure (DBP) are 6.7 ± 1.60 mmHg and 4.8 ± 1.47 mmHg, respectively. The correlation coefficients, r2, of the proposed model for the SBP and DBP are 0.606 ± 0.142 and 0.284 ± 0.166, respectively. The results show that the proposed method can serve for cuffless and touchless BP measurement.
A Wearable Assistant Device for the Hearing Impaired to Recognize Emergency Vehicle Sirens with Edge Computing
Wearable assistant devices play an important role in daily life for people with disabilities. Those who have hearing impairments may face dangers while walking or driving on the road. The major danger is their inability to hear warning sounds from cars or ambulances. Thus, the aim of this study is to develop a wearable assistant device with edge computing, allowing the hearing impaired to recognize the warning sounds from vehicles on the road. An EfficientNet-based, fuzzy rank-based ensemble model was proposed to classify seven audio sounds, and it was embedded in an Arduino Nano 33 BLE Sense development board. The audio files were obtained from the CREMA-D dataset and the Large-Scale Audio dataset of emergency vehicle sirens on the road, with a total number of 8756 files. The seven audio sounds included four vocalizations and three sirens. The audio signal was converted into a spectrogram by using the short-time Fourier transform for feature extraction. When one of the three sirens was detected, the wearable assistant device presented alarms by vibrating and displaying messages on the OLED panel. The performances of the EfficientNet-based, fuzzy rank-based ensemble model in offline computing achieved an accuracy of 97.1%, precision of 97.79%, sensitivity of 96.8%, and specificity of 97.04%. In edge computing, the results comprised an accuracy of 95.2%, precision of 93.2%, sensitivity of 95.3%, and specificity of 95.1%. Thus, the proposed wearable assistant device has the potential benefit of helping the hearing impaired to avoid traffic accidents.
A Novel Fuzzy DBNet for Medical Image Segmentation
When doctors are fatigued, they often make diagnostic errors. Similarly, pharmacists may also make mistakes in dispensing medication. Therefore, object segmentation plays a vital role in many healthcare-related areas, such as symptom analysis in biomedical imaging and drug classification. However, many traditional deep-learning algorithms use a single view of an image for segmentation or classification. When the image is blurry or incomplete, these algorithms fail to segment the pathological area or the shape of the drugs accurately, which can then affect subsequent treatment plans. Consequently, we propose the Fuzzy DBNet, which combines the dual butterfly network and the fuzzy ASPP in a deep-learning network and processes images from both sides of an object simultaneously. Our experiments used multi-category pill and lung X-ray datasets for training. The average Dice coefficient of our proposed model reached 95.05% in multi-pill segmentation and 97.05% in lung segmentation. The results showed that our proposed model outperformed other state-of-the-art networks in both applications, demonstrating that our model can use multiple views of an image to obtain image segmentation or identification.
Ischemic Stroke Detection System with a Computer-Aided Diagnostic Ability Using an Unsupervised Feature Perception Enhancement Method
We propose an ischemic stroke detection system with a computer-aided diagnostic ability using a four-step unsupervised feature perception enhancement method. In the first step, known as preprocessing, we use a cubic curve contrast enhancement method to enhance image contrast. In the second step, we use a series of methods to extract the brain tissue image area identified during preprocessing. To detect abnormal regions in the brain images, we propose using an unsupervised region growing algorithm to segment the brain tissue area. The brain is centered on a horizontal line and the white matter of the brain’s inner ring is split into eight regions. In the third step, we use a coinciding regional location method to find the hybrid area of locations where a stroke may have occurred in each cerebral hemisphere. Finally, we make corrections and mark the stroke area with red color. In the experiment, we tested the system on 90 computed tomography (CT) images from 26 patients, and, with the assistance of two radiologists, we proved that our proposed system has computer-aided diagnostic capabilities. Our results show an increased stroke diagnosis sensitivity of 83% in comparison to 31% when radiologists use conventional diagnostic images.